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Introduction 

The new generation of sequencing technology1 has been remarkably successful in finding the causes 

of Mendelian and rare diseases. Mendelian studies require more than one unrelated affected 

individuals with disease or linkage evidence in at least one family. In recent studies next-generation 

sequencing (NGS) has also been used to identify causes of rare genetic conditions even when they are 

seen in only a single patient.2,3 Complex diseases are caused by a combination of genetic, 

environmental and lifestyle factors. Some examples include Alzheimer's disease, scleroderma, asthma, 

Parkinson's disease, multiple sclerosis, osteoporosis, connective tissue diseases, kidney diseases, 

autoimmune diseases, and many more.4,5 There is an increasing awareness that de-novo mutations 

may be the underlying cause of undiagnosed genetic conditions seen in the clinic. These patients 

typically present with a wide range of clinical features and remain undiagnosed by tools that are built 

on the assumption of a Mendelian disease.  

 

NGS is creating significant interest as a tool that can objectively examine each patient’s genome 

individually to find potentially causative mutations. This is ideal for the discovery of new mutations or 

investigation of high penetrance rare diseases, but it may also provide long-awaited breakthroughs to 

understanding complex diseases. In addition, it provides the benefit of a common, standardizable 

approach that can be used to address confusing clinical presentations.6 

 

The ethical issues around genetic testing have been discussed extensively7 and are out of the scope of 

this review. In short, a family history of disease reveals much about a patient’s risk of disease, but the 

detailed nature of sequencing tests and the uncertainty of the interpretation raise concerns. As our 

understanding of genetic diseases improves and genetic testing becomes routine, it may well be 

possible to address those concerns so that patients can benefit from this remarkable technology. 

 

To learn more about Illumina sequencing and microarray technologies, visit www.illumina.com. 

 

One gene — two pathologies. De novo mutations in ATP1A3 and encoded protein 

modifications are associated with alternating hemiplegia of childhood (magenta) and rapid-

onset dystonia-parkinsonism (cyan). NGS  is changing the way we see genetic diseases. 

Heinzen E. L. et al. (2012) Nat Genet. 44:1030-4. 

                                                
1 Next Generation Sequencing (NGS) and Massively Parallel Sequencing (MPS) are often used interchangeably to refer to high 

throughput sequencing technologies. Sequencing by Synthesis (SBS) refers specifically to Illumina sequencing technology.  
2 Worthey, E. A., Mayer, A. N., Syverson, G. D., Helbling, D., Bonacci, B. B., et al. (2011) Making a definitive diagnosis: successful 2 Worthey, E. A., Mayer, A. N., Syverson, G. D., Helbling, D., Bonacci, B. B., et al. (2011) Making a definitive diagnosis: successful 

clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med 13: 255-262 
3 Choi, M., Scholl, U. I., Ji, W., Liu, T., Tikhonova, I. R., et al. (2009) Genetic diagnosis by whole exome capture and massively 

parallel DNA sequencing. Proc Natl Acad Sci U S A 106: 19096-19101 
4 Hunter, D. J. (2005) Gene-environment interactions in human diseases. Nat Rev Genet 6: 287-298 
5 Dempfle, A., Scherag, A., Hein, R., Beckmann, L., Chang-Claude, J., et al. (2008) Gene-environment interactions for complex 
traits: definitions, methodological requirements and challenges. Eur J Hum Genet 16: 1164-1172 
6 Need, A. C., Shashi, V., Hitomi, Y., Schoch, K., Shianna, K. V., et al. (2012) Clinical application of exome sequencing in 

undiagnosed genetic conditions. J Med Genet 49: 353-361 
7 Chadwick, R. (2011) Personal genomes: no bad news? Bioethics 25: 62-65 

http://www.illumina.com/
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General Reviews 

The following references are general reviews that provide an introduction to NGS and its potential use 

in diagnostics. 

Bras, J., Guerreiro, R., and Hardy, J. (2012) Use of next-generation sequencing and other 

whole-genome strategies to dissect neurological disease. Nat Rev Neurosci 13: 453-464 

This is an extensive overview of the successes and limitations of using NGS to study neurological diseases.  

 

Green, E. D., Guyer, M. S., and National Human Genome Research, I. (2011) Charting a course 

for genomic medicine from base pairs to bedside. Nature 470: 204-213 

This recent paper from National Institute of Health (NIH) represents a vision for the future of genomics. It 

describes the path and lists the imperatives towards an era of genomic medicine. The imperatives are 

making genomics-based diagnostics routine, defining the genetic components of disease, comprehensive 

characterization of cancer genomes, developing practical systems for clinical genomic informatics, and 

understanding the role of the human microbiome in health and disease. 

 

Maxmen, A. (2011) Exome sequencing deciphers rare diseases. Cell 144: 635-637 

This is a progress report from NIH’s Undiagnosed Diseases Program. The program began delivering 

genomics to the clinic and has led to the diagnosis of 39 rare diseases. This is an indication of future 

clinical application of the technology. In many respects it can be seen as a model of how next-generation 

sequencing can be used to understand diseases that defy current clinical approaches.  

 

Majewski, J., Schwartzentruber, J., Lalonde, E., Montpetit, A., and Jabado, N. (2011) What can 

exome sequencing do for you? J Med Genet 48: 580-589 

This paper provides an overview of the current and future use of next generation sequencing as it relates 

to whole exome sequencing in human disease. The authors focus on technical capabilities, limitations and 

ethical issues. 
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Categories of Disease 

Rare and Mendelian Disease 

Rare diseases are lifelong illnesses that may have a genetic component and impact fewer than 

200,000 individuals in the United States.8 In current clinical practice genetic testing is confirmatory 

and takes place after a clinical syndrome has been identified through discussion with the patient or 

parents.9 In a typical case the suspected gene will be amplified and sequenced through Sanger 

sequencing. The result is a confident statement about the mutations present in the region sequenced. 

However, when suspected and common causes have to be eliminated first, it can lead to a lengthy 

diagnostic odyssey for patients with rare genetic diseases. The increasing awareness that rare genetic 

diseases may be caused by de novo mutations is profoundly changing our perception of these 

diseases.10 

 

Mendelian diseases are usually defined as a mutation in a single gene that can cause a disease, which 

is inherited according to Mendel's laws. The Online Mendelian Inheritance in Man (OMIM) database 

contains a complete catalog of these genes and genetic disorders.11   

 

Exome sequencing is proving to be an effective approach for identification of genetic defects in both 

rare and Mendelian diseases. It is estimated that 85% of the mutations that cause Mendelian diseases 

are located in the approximately 1% to 1.5% of the genome that comprise the exons.12 In the context 

of rare or Mendelian diseases, exome sequencing has a high probability of identifying the underlying 

genetic cause. This approach should substantially increase the number of patients who receive a 

molecular diagnosis, even when the clinical presentation is ambiguous.13 

 

 

The cost-effectiveness and deep coverage of the targeted regions in exome sequencing 

provide a simplified analysis, with a very high level of confidence in the results. Where the 

mutated regions do not lie within an exome, whole-genome sequencing provides an 

agnostic view of the whole genome. A comparison of whole-exome and whole-genome 

sequencing results is shown above. The upper panel shows whole-exome sequencing and 

the lower panel shows whole-genome sequencing of one exon of the amyloid precursor 

protein (APP) gene. Bras, J., et al. (2012). Nat Rev Neurosci 13:453-64. 

                                                
8 http://rarediseases.info.nih.gov 
9 Raffan, E. and Semple, R. K. (2011) Next generation sequencing--implications for clinical practice. Br Med Bull 99: 53-71 
10 Ku, C. S., Polychronakos, C., Tan, E. K., Naidoo, N., Pawitan, Y., et al. (2012) A new paradigm emerges from the study of de 

novo mutations in the context of neurodevelopmental disease. Mol Psychiatry   
11 http://omim.org/ 
12 Majewski, J., Schwartzentruber, J., Lalonde, E., Montpetit, A. and Jabado, N. (2011) What can exome sequencing do for you? J 

Med Genet 48: 580-589 
13 Maxmen, A. (2011) Exome sequencing deciphers rare diseases. Cell 144: 635-637 
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References: 

Lines, M. A., Huang, L., Schwartzentruber, J., Douglas, S. L., Lynch, D. C., et al. (2012) 

Haploinsufficiency of a spliceosomal GTPase encoded by EFTUD2 causes mandibulofacial 

dysostosis with microcephaly. Am J Hum Genet 90: 369-377 

The authors used whole-exome sequencing of four unrelated affected individuals to identify heterozygous 

mutations of EFTUD2 in all four. The protein encoded by EFTUD2, is a highly conserved spliceosomal 

GTPase with a central regulatory role in the spliceosome. 

Illumina Technology: HiSeq 2000 exome sequencing with >12 Gbp of 100 bp paired-end reads per 

sample. 

 

Zankl, A., Duncan, E. L., Leo, P. J., Clark, G. R., Glazov, E. A., et al. (2012) Multicentric 

carpotarsal osteolysis is caused by mutations clustering in the amino-terminal transcriptional 

activation domain of MAFB. Am J Hum Genet 90: 494-501 

The authors identified missense mutations clustering within a 51 bp region of the single exon of MAFB in 

five unrelated cases of multicentric carpotarsal osteolysis (MCTO). A further six unrelated simplex cases 

with MCTO were also heterozygous for previously unreported mutations within this same region, as were 

affected members of two families with autosomal-dominant MCTO. MAFB encodes a transcription factor 

that negatively regulates RANKL-induced osteoclastogenesis and is essential for normal renal 

development. 

Illumina Technology: Genome AnalyzerII exome sequencing with 56 bp paired-end reads. 

 

Polvi, A., Linnankivi, T., Kivela, T., Herva, R., Keating, J. P., et al. (2012) Mutations in CTC1, 

encoding the CTS telomere maintenance complex component 1, cause cerebroretinal 

microangiopathy with calcifications and cysts. Am J Hum Genet 90: 540-549 

The authors found recessively inherited compound heterozygous mutations in CTC1 in four unrelated 

individuals with cerebroretinal microangiopathy with calcifications and cysts (CRMCC). CTC1 encodes the 

CTS telomere maintenance complex component 1. Sanger sequencing revealed seven more compound 

heterozygous mutations in eight more unrelated affected individuals. 

Illumina Technology: Genome AnalyzerIIx exome sequencing with 100 bp paired ends. 

 

Hood, R. L., Lines, M. A., Nikkel, S. M., Schwartzentruber, J., Beaulieu, C., et al. (2012) 

Mutations in SRCAP, encoding SNF2-related CREBBP activator protein, cause Floating-Harbor 

syndrome. Am J Hum Genet 90: 308-313 

The authors identified heterozygous truncating mutations in SRCAP in five unrelated individuals with 

sporadic Floating-Harbor syndrome (FHS). Sanger sequencing identified mutations in SRCAP in eight more 

affected individuals. Mutations were de novo in all six instances in which parental DNA was available. 

SRCAP is an SNF2-related chromatin-remodeling factor that serves as a coactivator for CREB-binding 

protein (CREBBP, better known as CBP, the major cause of Rubinstein-Taybi syndrome (RTS)). 

Illumina Technology: HiSeq 2000 exome sequencing with 35-40 Gb of 100 bp paired ends 
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Ostergaard, P., Simpson, M. A., Mendola, A., Vasudevan, P., Connell, F. C., et al. (2012) 

Mutations in KIF11 cause autosomal-dominant microcephaly variably associated with 

congenital lymphedema and chorioretinopathy. Am J Hum Genet 90: 356-362 

Whole-exome sequencing revealed heterozygous KIF11 mutations in three individuals with a combination 

of microcephaly and lymphedema. Subsequent sequencing of KIF11 in a further 15 unrelated 

microcephalic probands with lymphedema and/or chorioretinopathy identified additional heterozygous 

mutations in 12 of them. 

llumina Technology: Genome AnalyzerIIx exome sequencing with 76 bp paired ends. 

 

Audo, I., Bujakowska, K., Orhan, E., Poloschek, C. M., Defoort-Dhellemmes, S., et al. (2012) Whole-

exome sequencing identifies mutations in GPR179 leading to autosomal-recessive complete congenital 

stationary night blindness. Am J Hum Genet 90: 321-330 

Gibson, W. T., Hood, R. L., Zhan, S. H., Bulman, D. E., Fejes, A. P., et al. (2012) Mutations in EZH2 cause 

Weaver syndrome. Am J Hum Genet 90: 110-118 

Huppke, P., Brendel, C., Kalscheuer, V., Korenke, G. C., Marquardt, I., et al. (2012) Mutations in SLC33A1 

cause a lethal autosomal-recessive disorder with congenital cataracts, hearing loss, and low serum copper 

and ceruloplasmin. Am J Hum Genet 90: 61-68 

Johnston, J. J., Gropman, A. L., Sapp, J. C., Teer, J. K., Martin, J. M., et al. (2012) The phenotype of a 

germline mutation in PIGA: the gene somatically mutated in paroxysmal nocturnal hemoglobinuria. Am J 

Hum Genet 90: 295-300 

Jones, M. A., Ng, B. G., Bhide, S., Chin, E., Rhodenizer, D., et al. (2012) DDOST mutations identified by 

whole-exome sequencing are implicated in congenital disorders of glycosylation. Am J Hum Genet 90: 

363-368 

Lee, H., Graham, J. M., Jr., Rimoin, D. L., Lachman, R. S., Krejci, P., et al. (2012) Exome sequencing 

identifies PDE4D mutations in acrodysostosis. Am J Hum Genet 90: 746-751 

Lim, Y. M., Koh, I., Park, Y. M., Kim, J. J., Kim, D. S., et al. (2012) Exome sequencing identifies KIAA1377 

and C5orf42 as susceptibility genes for monomelic amyotrophy. Neuromuscul Disord 22: 394-400 

Michot, C., Le Goff, C., Goldenberg, A., Abhyankar, A., Klein, C., et al. (2012) Exome sequencing identifies 

PDE4D mutations as another cause of acrodysostosis. Am J Hum Genet 90: 740-745 

Sorte, H., Morkrid, L., Rodningen, O., Kulseth, M. A., Stray-Pedersen, A., et al. (2012) Severe ALG8-CDG 

(CDG-Ih) associated with homozygosity for two novel missense mutations detected by exome sequencing 

of candidate genes. Eur J Med Genet 55: 196-202 

Velinov, M., Dolzhanskaya, N., Gonzalez, M., Powell, E., Konidari, I., et al. (2012) Mutations in the gene 

DNAJC5 cause autosomal dominant Kufs disease in a proportion of cases: study of the Parry family and 8 

other families. PLoS ONE 7: e29729 
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Complex Disease 

The vast majority of genetic diseases fall into this category. Some examples include Alzheimer's 

disease, scleroderma, asthma, Parkinson's disease, multiple sclerosis, osteoporosis, connective tissue 

diseases, kidney diseases, autoimmune diseases, and many more.14,15,16 There are complete 

databases that catalog genome-wide association studies (GWAS) on these diseases.17,18 For the most 

part these complex diseases are caused by a combination of genetic, environmental, and lifestyle 

factors. The study and treatment of these diseases should take all these contributing factors into 

account.  

 

NGS offers a comprehensive set of tools to study these complex diseases. Whole-genome and exome-

sequencing can be combined with transcriptome sequencing (RNA-Seq) to assess expression levels 

and the expression of mutated transcripts and splice variants. The combination of these tools provides 

a holistic approach to studying these complex diseases. 

Reviews: 

Bras, J., Guerreiro, R. and Hardy, J. (2012) Use of next-generation sequencing and other whole-genome 

strategies to dissect neurological disease. Nat Rev Neurosci 13: 453-464 

Casals, F., Idaghdour, Y., Hussin, J. and Awadalla, P. (2012) Next-generation sequencing approaches for 

genetic mapping of complex diseases. J Neuroimmunol 248: 10-22 

Ku, C. S., Cooper, D. N., Wu, M., Roukos, D. H., Pawitan, Y., et al. (2012) Gene discovery in familial 

cancer syndromes by exome sequencing: prospects for the elucidation of familial colorectal cancer type X. 

Mod Pathol 25: 1055-1068 

References: 

Tennessen, J. A., Bigham, A. W., O'Connor, T. D., Fu, W., Kenny, E. E., et al. (2012) Evolution 

and functional impact of rare coding variation from deep sequencing of human exomes. Science 

337: 64-69 

In this study the authors sequenced 15,585 genes in 2,440 individuals of European and African ancestry. 

The majority of the over 500,000 SNV are rare (86% with a minor allele frequency <0.5%), novel (82%), 

and population-specific (82%). On average, ~95.7% of SNVs predicted to be functionally important were 

rare. 

Illumina Technology: Genome AnalyzerIIx or HiSeq 2000 using either paired-end 76 base or 50 base 

runs. 

 

 

 

 

 

                                                
14 Hunter, D. J. (2005) Gene-environment interactions in human diseases. Nat Rev Genet 6: 287-298 
15 Dempfle, A., Scherag, A., Hein, R., Beckmann, L., Chang-Claude, J., et al. (2008) Gene-environment interactions for complex 
traits: definitions, methodological requirements and challenges. Eur J Hum Genet 16: 1164-1172 
16 Johnson, A. D. and O'Donnell, C. J. (2009) An open access database of genome-wide association results. BMC Med Genet 10: 6 
17 http://www.genome.gov/gwastudies/ 
18 https://www.gwascentral.org/ 

https://www.gwascentral.org/


 

 

 9 

 

     

Kiezun, A., Garimella, K., Do, R., Stitziel, N. O., Neale, B. M., et al. (2012) Exome sequencing 

and the genetic basis of complex traits. Nat Genet 44: 623-630 

The authors analyze exome sequencing data from 438 individuals and use this as a basis to review 

processing and quality control of raw sequence data, as well as evaluate the statistical properties of 

exome sequencing studies. They conclude that enthusiasm for exome sequencing studies to identify the 

genetic basis of complex traits should be combined with caution stemming from the observation that on 

the order of over 10,000 samples may be required to reach sufficient statistical power. 

Illumina Technology: Genome Analyzer exome sequencing. 

 

Genome-Wide Association Studies (GWAS) 

GWAS are designed to detect associations between common single-nucleotide polymorphisms (SNPs) 

in common complex diseases such as heart disease, diabetes, autoimmune diseases, and psychiatric 

disorders.19 GWAS have led to many scientific and biological discoveries but have failed to explain the 

bulk of the heritability.20,21 The assumption that common risk variants can explain the vast majority of 

genetic heritability for any human disease, either individually or collectively, may not adequately 

describe the complexity of these diseases. The large cohorts and the rigorous statistical analysis that 

was developed for GWAS will facilitate future studies with new technologies such as NGS. The 

sequencing of entire genomes in large cohorts at affordable prices is likely to generate additional 

genes, pathways, and biological insights, as well as the potential to identify causal mutations.22 

 
Disease or trait % Variance explained by all GWAS SNPs combined 

Type 1 diabetes 60 (Includes pre-GWAS loci with large effects.) 

Type 2 diabetes 5-10 

Obesity (BMI) 1-2 

Crohn’s disease 10 

Ulcerative colitis 5 

Multiple sclerosis 10 

Ankylosing spondylitis 20 

Schizophrenia 1 

Bipolar disorder 2 

Breast cancer 8 

Von Willebrand factor 13 

Height 10 

Bone mineral density 5 

QT interval 7 

HDL cholesterol 10 

Platelet count 5-10 

Visscher, P. M., Brown, M. A., McCarthy, M. I. and Yang, J. (2012) Five years of GWAS discovery. Am J Hum Genet 90: 7-24 

 

                                                
19 A Catalog of Published Genome-Wide Association Studies. Available at: www.genome.gov/gwastudies 
20 McClellan, J. and King, M. C. (2010) Genetic heterogeneity in human disease. Cell 141: 210-217 
21 Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., et al. (2009) Finding the missing heritability of complex 

diseases. Nature 461: 747-753 
22 Visscher, P. M., Brown, M. A., McCarthy, M. I. and Yang, J. (2012) Five years of GWAS discovery. Am J Hum Genet 90: 7-24 
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Reviews: 

Krueger, F., Kreck, B., Franke, A. and Andrews, S. R. (2012) DNA methylome analysis using short bisulfite 

sequencing data. Nat Methods 9: 145-151 

Visscher, P. M., Brown, M. A., McCarthy, M. I. and Yang, J. (2012) Five years of GWAS discovery. Am J 

Hum Genet 90: 7-24 

Cirulli, E. T. and Goldstein, D. B. (2010) Uncovering the roles of rare variants in common disease through 

whole-genome sequencing. Nat Rev Genet 11: 415-425 

Ku, C. S., Loy, E. Y., Pawitan, Y. and Chia, K. S. (2010) The pursuit of genome-wide association studies: 

where are we now? J Hum Genet 55: 195-206 

References: 

International Stroke Genetics, C., Wellcome Trust Case Control, C., Bellenguez, C., Bevan, S., 

Gschwendtner, A., et al. (2012) Genome-wide association study identifies a variant in HDAC9 associated 

with large vessel ischemic stroke. Nat Genet 44: 328-333 

Manning, A. K., Hivert, M. F., Scott, R. A., Grimsby, J. L., Bouatia-Naji, N., et al. (2012) A genome-wide 

approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and 

insulin resistance. Nat Genet 44: 659-669 

Sasayama, D., Hiraishi, A., Tatsumi, M., Kamijima, K., Ikeda, M., et al. (2012) Possible association of 

CUX1 gene polymorphisms with antidepressant response in major depressive disorder. Pharmacogenomics 

J   

Sobrin, L., Ripke, S., Yu, Y., Fagerness, J., Bhangale, T. R., et al. (2012) Heritability and Genome-Wide 

Association Study to Assess Genetic Differences between Advanced Age-Related Macular Degeneration 

Subtypes. Ophthalmology  119:1874-85 

Sun, L., Rommens, J. M., Corvol, H., Li, W., Li, X., et al. (2012) Multiple apical plasma membrane 

constituents are associated with susceptibility to meconium ileus in individuals with cystic fibrosis. Nat 

Genet 44: 562-569 
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Mitochondrial Disease 

Mitochondrial diseases are caused by abnormal functioning of mitochondria. To date more than 200 

different molecular defects have been described in patients with mitochondrial diseases.23 These 

abnormalities may be the result of spontaneous or inherited mutations in the mitochondrial genome 

(mtDNA) or in nuclear genes that code for mitochondrial components. The mtDNA encodes only 13 

proteins of the respiratory chain, while most of the estimated 1,500 mitochondrial proteins are 

nuclear-encoded. Mitochondrial deficiencies often affect multiple tissues leading to multi-system 

diseases that present with many phenotypic features.24 Those characteristics make these diseases 

notoriously difficult to diagnose because of the multitude of candidate genes and the highly variable 

nature of the clinical presentation.25 

 

Targeted NGS is a very effective approach to sequence mitochondrial genomes. This allows deep 

sequencing that can also detect low levels of heteroplasmy. 

 

Reviews: 

Chinnery, P. F., Elliott, H. R., Hudson, G., Samuels, D. C. and Relton, C. L. (2012) Epigenetics, 

epidemiology and mitochondrial DNA diseases. Int J Epidemiol 41: 177-187 

References: 

Calvo, S. E., Compton, A. G., Hershman, S. G., Lim, S. C., Lieber, D. S., et al. (2012) Molecular 

diagnosis of infantile mitochondrial disease with targeted next-generation sequencing. Sci 

Transl Med 4: 118ra110 

The authors performed “MitoExome” sequencing of the mitochondrial DNA (mtDNA) and exons of ~1000 

nuclear genes encoding mitochondrial proteins. In 42 unrelated infants with clinical and biochemical 

evidence of mitochondrial oxidative phosphorylation disease, the investigators were able to establish firm 

diagnoses in 10 patients (24%) who had mutations in genes previously linked to disease. Thirteen patients 

(31%) had mutations in nuclear genes not previously linked to disease. 

Illumina Technology: Genome Analyzer II exome sequencing with 76 bp paired-end reads. 

 

Mayr, J. A., Haack, T. B., Graf, E., Zimmermann, F. A., Wieland, T., et al. (2012) Lack of the mitochondrial 

protein acylglycerol kinase causes Sengers syndrome. Am J Hum Genet 90: 314-320 

Gunnarsdottir, E. D., Li, M., Bauchet, M., Finstermeier, K. and Stoneking, M. (2011) High-throughput 

sequencing of complete human mtDNA genomes from the Philippines. Genome Res 21: 1-11 

Mayr, J. A., Zimmermann, F. A., Fauth, C., Bergheim, C., Meierhofer, D., et al. (2011) Lipoic acid 

synthetase deficiency causes neonatal-onset epilepsy, defective mitochondrial energy metabolism, and 

glycine elevation. Am J Hum Genet 89: 792-797 

Pierson, T. M., Adams, D., Bonn, F., Martinelli, P., Cherukuri, P. F., et al. (2011) Whole-exome sequencing 

identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial 

m-AAA proteases. PLoS Genet 7: e1002325 

                                                
23 Chinnery, P. F., Elliott, H. R., Hudson, G., Samuels, D. C. and Relton, C. L. (2012) Epigenetics, epidemiology and mitochondrial 

DNA diseases. Int J Epidemiol 41: 177-187 
24 Scharfe, C., Lu, H. H., Neuenburg, J. K., Allen, E. A., Li, G. C., et al. (2009) Mapping gene associations in human mitochondria 

using clinical disease phenotypes. PLoS Comput Biol 5: e1000374 
25 Calvo, S. E., Compton, A. G., Hershman, S. G., Lim, S. C., Lieber, D. S., et al. (2012) Molecular diagnosis of infantile 

mitochondrial disease with targeted next-generation sequencing. Sci Transl Med 4: 118ra110 
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Heteroplasmy 

Most eukaryotic cells contain many hundreds of mitochondria with hundreds of copies of mtDNA. 

Heteroplasmy occurs when mutations occur only in some copies while the remainder is unaffected. 

Heteroplasmy may play an important role mitochondrial diseases because it can modulate the severity 

of the diseases when only a fraction of the mitochondria is impacted. Deep coverage with NGS can 

readily detect even low levels of heteroplasmy. Extensive use of the technology has shown that 

heteroplasmy is much more common than previously appreciated.26 

 

References: 

Guo, Y., Cai, Q., Samuels, D. C., Ye, F., Long, J., et al. (2012) The use of next generation sequencing 

technology to study the effect of radiation therapy on mitochondrial DNA mutation. Mutat Res 744: 154-

160 

Grant, S. F., Glessner, J. T., Bradfield, J. P., Zhao, J., Tirone, J. E., et al. (2012) Lack of relationship 

between mitochondrial heteroplasmy or variation and childhood obesity. Int J Obes (Lond) 36: 80-83 

Sondheimer, N., Glatz, C. E., Tirone, J. E., Deardorff, M. A., Krieger, A. M., et al. (2011) Neutral 

mitochondrial heteroplasmy and the influence of aging. Hum Mol Genet 20: 1653-1659 

 

  

                                                
26 He, Y., Wu, J., Dressman, D. C., Iacobuzio-Donahue, C., Markowitz, S. D., et al. (2010) Heteroplasmic mitochondrial DNA 

mutations in normal and tumour cells. Nature 464: 610-614 
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Epigenetics and Imprinting Disease 

Epigenetics refers to changes in the genome function, without changes in the sequence of the 

genome. Abnormalities in these epigenetic mechanisms have been linked to a wide range of diseases 

such as Prader–Willi syndrome, Angelman’s syndrome, Rett syndrome, Rubinstein–Taybi syndrome 

and Coffin–Lowry syndrome.27,28  

 

 

Interaction between RNA, histone modification, and DNA methylation in heritable silencing. 

 
DNA methylation 

The arrival of NGS technologies has led to a number of DNA methylome studies at a single base 

resolution.29 DNA methylation occurs predominantly at CpG dinucleotides in the differentiated human 

genome. Embryonic stem cells may use different DNA methylation mechanisms in transcriptional 

regulation to maintain their pluripotency.30 

 

Histone modifications 

The development of ChIP-Seq with NGS enabled the first genome-wide mapping of histone 

modifications. This allowed the identification of activation marks such as mono-methylations of H3K27, 

H3K9, H4K20, H3K79, and H2BK.31 The epigenetic control of expression for both PolI and PolII has 

been mapped.32 These are examples of the information that can be obtained using this approach. 

  

                                                
27 Portela, A. and Esteller, M. (2010) Epigenetic modifications and human disease. Nat Biotechnol 28: 1057-1068 
28 Egger, G., Liang, G., Aparicio, A. and Jones, P. A. (2004) Epigenetics in human disease and prospects for epigenetic therapy. 

Nature 429: 457-463 
29 Lister, R., Pelizzola, M., Dowen, R. H., Hawkins, R. D., Hon, G., et al. (2009) Human DNA methylomes at base resolution show 

widespread epigenomic differences. Nature 462: 315-322 
30 Lister, R., Pelizzola, M., Kida, Y. S., Hawkins, R. D., Nery, J. R., et al. (2011) Hotspots of aberrant epigenomic reprogramming in 

human induced pluripotent stem cells. Nature 471: 68-73 
31 Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., et al. (2007) High-resolution profiling of histone methylations in the 

human genome. Cell 129: 823-837 
32 Barski, A., Chepelev, I., Liko, D., Cuddapah, S., Fleming, A. B., et al. (2010) Pol II and its associated epigenetic marks are 

present at Pol III-transcribed noncoding RNA genes. Nat Struct Mol Biol 17: 629-634 
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Krueger, F., Kreck, B., Franke, A. and Andrews, S. R. (2012) DNA methylome analysis using short bisulfite 

sequencing data. Nat Methods 9: 145-151 

Ku, C. S., Naidoo, N., Wu, M. and Soong, R. (2011) Studying the epigenome using next generation 

sequencing. J Med Genet 48: 721-730 
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Mutations in MLL Cause Wiedemann-Steiner Syndrome. Am J Hum Genet 91: 358-364 

The authors identified de novo mutations in MLL in five of the six individuals with hypertrichosis cubiti. 

This condition is associated with short stature, intellectual disability, and a distinctive facial appearance, 

consistent with a diagnosis of Wiedemann-Steiner syndrome. MLL encodes a histone methyltransferase 

that regulates chromatin-mediated transcription through the catalysis of methylation of histone H3K4. 

Each of the five mutations is predicted to result in premature termination of the protein product. 

Illumina Technology: HiSeq 2000 exome sequencing with 100 bp paired-end reads. 
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mutations of the gene encoding the histone acetyltransferase KAT6B cause Genitopatellar 

syndrome. Am J Hum Genet 90: 290-294 

The authors found de novo mutations of KAT6B in five individuals with Genitopatellar Syndrome (GPS). 

KAT6B encodes a member of the MYST family of histone acetyltranferases. The authors demonstrate a 

reduced level of both histone H3 and H4 acetylation in patient-derived cells suggesting that dysregulation 

of histone acetylation is a direct functional consequence of GPS alleles. 

Illumina Technology: Genome AnalyzerIIx. 
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human germline associates with selective structural mutability in the human genome. PLoS Genet 8: 
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complex diseases. Brief Funct Genomics 9: 477-485 
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Undiagnosed Genetic Disease 

It is estimated that up to half of the patients tested currently receive no molecular diagnosis.33 The 

remarkable success of the National Institute of Health (NIH) Undiagnosed Diseases Program, which 

has led to the diagnosis of 39 rare diseases and the identification of two new diseases, has 

demonstrated the utility of whole-genome and whole-exome sequencing in the clinic. Patients with 

undiagnosed genetic conditions tend to present with a wide range of clinical features and it is often 

necessary to consider each patient’s genome individually, rather than looking for common disrupted 

genes in multiple cases with a similar phenotype. By using this approach Need and colleagues 

achieved a likely genetic diagnosis in six of 12 previously undiagnosed probands.34 While many issues 

must still be addressed before next-generation can become a routine part of a clinical laboratory, the 

results so far indicate that it has the potential to become a powerful diagnostic tool for genetic 

diseases. 

 
Step Filter 

1 homozygous (including hemizygous X variants) in the proband and never homozygous in the controls 

(recessive and X-linked variants) 

2 heterozygous in the proband and absent in the parents and controls (putative de novo variants) 

3 Two rare (MAF<0.03) variants in the proband that were not seen together in the parents or in any 

controls (compound heterozygotes). 

 

The above table shows how variants were prioritized to identify highly penetrant genotypes 

that might account for each child’s conditions. Need, A. C., et al. (2012) J Med Genet 49: 

353-361 

 
Reviews: 

Raffan, E. and Semple, R. K. (2011) Next generation sequencing--implications for clinical 

practice. Br Med Bull 99: 53-71 

This paper provides a general overview of some of the key NGS technologies. The authors go on to discuss 

areas of agreement and controversy between the new technologies and established clinical practices. They 

also outline issues that must be addressed before the new technologies are to become a mature part of 

the diagnostic repertoire. The review also includes a table of unexpected genetic defects that were 

discovered through NGS. 

  

                                                
33 Ng, S. B., Buckingham, K. J., Lee, C., Bigham, A. W., Tabor, H. K., et al. (2010) Exome sequencing identifies the cause of a 

mendelian disorder. Nat Genet 42: 30-35 
34 Need, A. C., Shashi, V., Hitomi, Y., Schoch, K., Shianna, K. V., et al. (2012) Clinical application of exome sequencing in 

undiagnosed genetic conditions. J Med Genet 49: 353-361 
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The authors report the results of a pilot program of whole-exome sequencing on 12 patients with 
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tested negative in a micro-array based assay. This undertaking resulted in a likely genetic diagnosis in 6 

of the 12 probands, including the identification of apparently causal mutations in four genes known to 

cause Mendelian disease. This study provides evidence that NGS  can have high success rates in a clinical 

setting, but also highlights key challenges. It further suggests that the presentation of known Mendelian 

conditions may be considerably broader than currently recognized. The authors conclude that NGS should 

be strongly considered in all cases where a genetic condition is strongly suspected but traditional clinical 

genetic testing has proven negative. Furthermore, in some cases it is likely that NGS  will prove faster and 

less expensive than the long diagnostic odyssey many families now endure. 

Illumina Technology: HiSeq 2000. 
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Leidenroth, A., Sorte, H. S., Gilfillan, G., Ehrlich, M., Lyle, R., et al. (2012) Diagnosis by sequencing: 

correction of misdiagnosis from FSHD2 to LGMD2A by whole-exome analysis. Eur J Hum Genet 20: 999-

1003 
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regions. Eur J Hum Genet 20: 58-63 
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Reproductive Health 

Carrier Screening 

Carrier screening involves the identification of unaffected individuals who carry one copy of a 

dysfunctional gene for a disease that requires two dysfunctional copies for the disease to be 

expressed. Mendelian diseases account for approximately 20% of infant mortality and ~10% of 

pediatric hospitalizations.35 Preconception screening, together with genetic counseling of carriers, has 

resulted in remarkable declines in the incidence of several severe recessive diseases such as Tay-

Sachs disease.36 

 

There are several approaches for carrier screening, from screening a small set of markers to whole 

exome sequencing. Bell et al. showed that sequencing a targeted set of 437 genes is a cost effective 

approach with excellent sensitivity and specificity.37 

Reviews: 

Jackson, L. and Pyeritz, R. E. (2011) Molecular technologies open new clinical genetic vistas. Sci Transl 

Med 3: 65ps62 

Grody, W. W. (2011) Expanded carrier screening and the law of unintended consequences: from cystic 

fibrosis to fragile X. Genet Med 13: 996-997 

References: 

Johnston, J. J., Gropman, A. L., Sapp, J. C., Teer, J. K., Martin, J. M., et al. (2012) The phenotype 

of a germline mutation in PIGA: the gene somatically mutated in paroxysmal nocturnal 

hemoglobinuria. Am J Hum Genet 90: 295-300 

This is a targeted resequencing study of a rare disease called paroxysmal nocturnal hemoglobinuria for all 

exons on the X chromosome. This rare disease was found in a single pedigree and the female carrier 

individual was subject to targeted resequencing screening.  

Illumina Technology: Genome Analyzer 107x for the X exome. 

 

Bell, C. J., Dinwiddie, D. L., Miller, N. A., Hateley, S. L., Ganusova, E. E., et al. (2011) Carrier 

testing for severe childhood recessive diseases by next-generation sequencing. Sci Transl Med 

3: 65ra64 

The authors report a preconception carrier screen for 448 severe recessive childhood diseases. The screen 

uses NGS sequencing of 7717 regions from 437 target genes. This approach yields a 160-fold average 

target coverage and mutation detection/genotyping, had ~95% sensitivity, and ~100% specificity for 

substitution, insertion/deletion, splicing, gross deletion mutations and SNPs. This targeted screen 

represents a cost-effective approach to screen for severe recessive childhood disorders. 

Illumina Technology: Genome AnalyzerIIx 50 bp reads and HiSeq 150 bp sequencing libraries. 

 

                                                
35 Kumar, P., Radhakrishnan, J., Chowdhary, M. A. and Giampietro, P. F. (2001) Prevalence and patterns of presentation of genetic 

disorders in a pediatric emergency department. Mayo Clin Proc 76: 777-783 
36 Kaback, M. M. (2000) Population-based genetic screening for reproductive counseling: the Tay-Sachs disease model. Eur J 

Pediatr 159 Suppl 3: S192-195 
37 Bell, C. J., Dinwiddie, D. L., Miller, N. A., Hateley, S. L., Ganusova, E. E., et al. (2011) Carrier testing for severe childhood 

recessive diseases by next-generation sequencing. Sci Transl Med 3: 65ra64 
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BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer. JAMA 307: 

382-390 

 

Prenatal Diagnostics  

Prenatal diagnosis refers to testing for diseases or conditions in a fetus or embryo before it is born in 

order to detect birth defects. Traditionally, this has been done through invasive procedures such as 

amniocentesis. The observation that cell free DNA, present in the plasma of pregnant women, 

represents the complete genome of the fetus creates the opportunity for non-invasive genetic 

screens.38,39 One of the first applications was the use of NGS to determine fetal chromosomal 

aneuploidy.40,41 The initial findings were replicated in larger datasets and different cohorts.42,43,44,45 It 

can be expected that this approach will extend beyond trisomy to other areas such as Rhesus 

disease.46 

 

 

It is possible to non-invasively sequence the entire prenatal genome in the first and second 

trimester and in the absence of DNA from the father. Fan et al. Nature 487:320-4. 2012 

 

                                                
38 Lo, Y. M., Chan, K. C., Sun, H., Chen, E. Z., Jiang, P., et al. (2010) Maternal plasma DNA sequencing reveals the genome-wide 

genetic and mutational profile of the fetus. Sci Transl Med 2: 61ra91 
39 Fan, H. C., Blumenfeld, Y. J., Chitkara, U., Hudgins, L. and Quake, S. R. (2010) Analysis of the size distributions of fetal and 
maternal cell-free DNA by paired-end sequencing. Clin Chem 56: 1279-1286 
40 Chiu, R. W., Chan, K. C., Gao, Y., Lau, V. Y., Zheng, W., et al. (2008) Noninvasive prenatal diagnosis of fetal chromosomal 

aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc Natl Acad Sci U S A 105: 20458-20463 
41 Fan, H. C., Blumenfeld, Y. J., Chitkara, U., Hudgins, L. and Quake, S. R. (2008) Noninvasive diagnosis of fetal aneuploidy by 

shotgun sequencing DNA from maternal blood. Proc Natl Acad Sci U S A 105: 16266-16271 
42 Ehrich, M., Deciu, C., Zwiefelhofer, T., Tynan, J. A., Cagasan, L., et al. (2011) Noninvasive detection of fetal trisomy 21 by 

sequencing of DNA in maternal blood: a study in a clinical setting. Am J Obstet Gynecol 204: 205 e201-211 
43 Chiu, R. W., Sun, H., Akolekar, R., Clouser, C., Lee, C., et al. (2010) Maternal plasma DNA analysis with massively parallel 

sequencing by ligation for noninvasive prenatal diagnosis of trisomy 21. Clin Chem 56: 459-463 
44 Fan, H. C. and Quake, S. R. (2010) Sensitivity of noninvasive prenatal detection of fetal aneuploidy from maternal plasma using 
shotgun sequencing is limited only by counting statistics. PLoS ONE 5: e10439 
45 Chu, T., Bunce, K., Hogge, W. A. and Peters, D. G. (2010) Statistical considerations for digital approaches to non-invasive fetal 

genotyping. Bioinformatics 26: 2863-2866 
46 Moise, K. J., Jr. (2008) Management of rhesus alloimmunization in pregnancy. Obstet Gynecol 112: 164-176 
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Jackson, L. and Pyeritz, R. E. (2011) Molecular technologies open new clinical genetic vistas. Sci Transl 

Med 3: 65ps62 

Evans, M. I. and Kilpatrick, M. (2010) Noninvasive prenatal diagnosis: 2010. Clin Lab Med 30: 655-665 

Lee, C. (2010) The future of prenatal cytogenetic diagnostics: a personal perspective. Prenat Diagn 30: 

706-709 

Chiu, R. W., Cantor, C. R. and Lo, Y. M. (2009) Non-invasive prenatal diagnosis by single molecule 

counting technologies. Trends Genet 25: 324-331 
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Fan, H. C., Gu, W., Wang, J., Blumenfeld, Y. J., El-Sayed, Y. Y., et al. (2012) Non-invasive 

prenatal measurement of the fetal genome. Nature 487: 320-324 

The authors demonstrate that it is possible to non-invasively sequence the entire prenatal genome, in the 

first and second trimester and in the absence of DNA from the father. They also use exome sequencing to 

detect clinically relevant and deleterious alleles that were paternally inherited or had arisen as de novo 

germline mutations. This non-invasive sequencing of the fetal genome may ultimately facilitate the 

diagnosis of all inherited and de novo genetic diseases. 

Illumina Technology: Whole-genome sequencing on a Genome AnalyzerII and HiSeq 2000 to a depth of 

~52.7X. Exome Sequencing on a HiSeq 2000 with 332, 344, and 930 million aligned reads for first, 

second, and third trimesters. 

 

Kitzman, J. O., Snyder, M. W., Ventura, M., Lewis, A. P., Qiu, R., et al. (2012) Noninvasive 

whole-genome sequencing of a human fetus. Sci Transl Med 4: 137ra176 

In this paper the authors reconstruct the whole-genome sequence of a human fetus using samples 

obtained non-invasively during the second trimester, including DNA from the pregnant mother, DNA from 

the father, and “cell-free” DNA from the pregnant mother's plasma. The key message of this paper is that 

new mutations in the genome of the fetus can be sensitively detected and triaged for validation. 

Illumina Technology: HiSeq 2000 instruments (Illumina) using paired-end 101-bp reads with an index 

read of 9 bp. 
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Chiu, R. W., Akolekar, R., Zheng, Y. W., Leung, T. Y., Sun, H., et al. (2011) Non-invasive 

prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large 

scale validity study. BMJ 342: c7401 

This paper describes the feasibility testing of plasma DNA screening for fetal trisomy 21. The cohort 

consisted of 753 pregnant women at high risk for fetal trisomy, including 21 who underwent definitive 

diagnosis by full karyotyping and 86 who had a fetus with trisomy. The authors used an 8-plex and a 2-

plex indexing protocol and found that the 2-plex indexing was superior. With the 2-plex protocol, trisomy 

21 fetuses were detected at 100% sensitivity and 97.9% specificity, which resulted in a positive predictive 

value of 96.6% and negative predictive value of 100%. The authors conclude that, if referrals for 

amniocentesis or chorionic villus sampling were based on the sequencing test results, about 98% of the 

invasive diagnostic procedures could be avoided. 

Illumina Technology: Genome AnalyzerII and Genome AnalyzerIIx. 

 

Sehnert, A. J., Rhees, B., Comstock, D., de Feo, E., Heilek, G., et al. (2011) Optimal detection of 

fetal chromosomal abnormalities by massively parallel DNA sequencing of cell-free fetal DNA 

from maternal blood. Clin Chem 57: 1042-1049 

This paper describes a normalization method that minimizes the intra- and inter-run sequencing variation. 

The authors developed the algorithm on a training set of 71 samples with 26 abnormal karyotypes. The 

classification process was then evaluated on an independent test set of 48 samples with 27 abnormal 

karyotypes. They achieved 100% correct classification of T21 (13 of 13) and T18 (8 of 8) samples. They 

also discovered additional chromosomal abnormalities. 

Illumina Technology: Genome AnalyzerIIX 36 bp reads. 

 

Palomaki, G. E., Kloza, E. M., Lambert-Messerlian, G. M., Haddow, J. E., Neveux, L. M., et al. 

(2011) DNA sequencing of maternal plasma to detect Down syndrome: an international clinical 

validation study. Genet Med 13: 913-920 

To test the accuracy of non-invasive testing with NGS a study was designed with a cohort of 4664 

pregnancies at high risk for Down syndrome. The internally validated, laboratory-developed test based on 

NGS was compared to fetal karyotyping in 212 Down syndrome and 1484 matched euploid pregnancies. 

In the blinded, nested case-control study, the Down syndrome detection rate was 98.6% (209/212), the 

false-positive rate was 0.20% (3/1471), and the testing failed in 13 pregnancies (0.8%). Taking into 

account the complexity of the test and the resources required, the authors conclude that the study 

supports offering NGS to women identified as being at high risk for Down syndrome. The turnaround time 

for 95% of patient results would be comparable with currently available cytogenetic analysis of amniotic 

fluid cells and chorionic villus sampling. The availability of NGS could also justify lowering 

serum/ultrasound screening cutoffs, resulting in a higher rate of Down syndrome detection. 

Illumina Technology: HiSeq 2,000. 
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and trisomy 18. Am J Obstet Gynecol 207: 137 e131-138 
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and trisomy 18. Am J Obstet Gynecol 206: 319 e311-319 
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of fetal trisomy 18 and trisomy 13 by maternal plasma DNA sequencing. PLoS ONE 6: e21791 

 

Neonatal Diagnostics 

 

Neonatal diagnosis refers to the special cases where there is a need to diagnose the condition of a 

newborn. Early diagnosis and intervention can significantly expand treatment options and improve 

outcomes. The following paper is an example of this approach. 

 

Bonnefond, A., Durand, E., Sand, O., De Graeve, F., Gallina, S., et al. (2010) Molecular diagnosis 

of neonatal diabetes mellitus using next-generation sequencing of the whole exome. PLoS ONE 

5: e13630 

The molecular diagnosis of monogenic non-autoimmune neonatal diabetes mellitus (NDM) is critical for 

patient care, as patients carrying a mutation in KCNJ11 or ABCC8 can be treated by oral sulfonylurea 

drugs instead of insulin therapy. In this paper the authors evaluated the potential of whole-exome 

sequencing to diagnose a patient with permanent NDM for whom mutations in KCNJ11, ABCC8, and INS, 

as well as abnormalities in chromosome 6q24 had been previously excluded. The authors identified a 

novel non-synonymous mutation in ABCC8 (c.1455G>C/p.Q485H), which was subsequently confirmed by 

Sanger sequencing. They conclude that whole-genome exome sequencing is a cost-effective and rapid 

approach to identify mutations in NDM patients. 

Illumina Technology: Genome AnalyzerIIx with 76 bp paired-end reads and 65x coverage. Validated with 

the Illumina Human1M-Duo Array. 
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Types of Genetic Modifications 

De Novo Mutations 

One of the more surprising discoveries in the recent flood of genome sequences is that normal 

individuals carry between 20,000 and 40,000 variations in their exomes. In the 1000 Genomes 

Project, each person was found to carry approximately 250 to 300 loss-of-function variants in 

annotated genes and 50 to 100 variants previously implicated in genetic disorders. In addition there 

are approximately 10-8 de novo germline base substitutions per base pair per generation.48 De novo 

mutations and microlesions are refractory to analysis by microarray-based methods and as a result, 

little was known about their frequency of occurrence or contribution to genetic disease until the advent 

of NGS.49 

 

Exome sequencing accounts for the majority of papers that report de novo mutations. This approach is 

also cost-effective compared to the sequential testing involved in a typical diagnostic odyssey.  

 

 

Among patients with the same disease, de novo mutations usually occur in multiple 

positions of a gene. These positions will not be represented on a microarray and will be 

missed by microarray analysis. Jones, W., et al. (2012) De Novo Mutations in MLL Cause 

Wiedemann-Steiner Syndrome. Am J Hum Genet 91: 358-364.50 

 
Reviews: 

Iossifov, I., Ronemus, M., Levy, D., Wang, Z., Hakker, I., et al. (2012) De novo gene disruptions in 

children on the autistic spectrum. Neuron 74: 285-299 

Ku, C. S., Polychronakos, C., Tan, E. K., Naidoo, N., Pawitan, Y., et al. (2012) A new paradigm emerges 

from the study of de novo mutations in the context of neurodevelopmental disease. Mol Psychiatry   
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Heinzen, E. L., Swoboda, K. J., Hitomi, Y., Gurrieri, F., Nicole, S., et al. (2012) De novo 

mutations in ATP1A3 cause alternating hemiplegia of childhood. Nat Genet 44: 1030-1034 

The authors used exome sequencing of seven patients with Alternating Hemiplegia of Childhood (AHC) and 

their unaffected parents to identify de novo nonsynonymous mutations in ATP1A3 in all seven individuals. 

In a subsequent sequence analysis of 98 other patients with AHC, they found that ATP1A3 mutations were 

likely to be responsible for at least 74% of the cases. They also found one inherited mutation in a case of 

familial AHC. Notably, most AHC cases are caused by one of seven recurrent ATP1A3 mutations – one of 

which was observed in 36 patients. ATP1A3 mutations are known to cause rapid-onset dystonia-

parkinsonism. In the case of AHC-causing mutations there were reductions in ATPase activity without 

affecting the level of protein expression. 

Illumina Technology: Genome AnalyzerIIx and HiSeq 2000 exome sequencing to an average coverage of 

90-fold. 

 

Jones, W. D., Dafou, D., McEntagart, M., Woollard, W. J., Elmslie, F. V., et al. (2012) De Novo 

Mutations in MLL Cause Wiedemann-Steiner Syndrome. Am J Hum Genet 91: 358-364 

The authors identified de novo mutations in MLL in five of the six individuals with hypertrichosis cubiti 

associated with short stature, intellectual disability, and a distinctive facial appearance, consistent with a 

diagnosis of Wiedemann-Steiner syndrome. MLL encodes a histone methyltransferase that regulates 

chromatin-mediated transcription through the catalysis of methylation of histone H3K4. Each of the five 

mutations is predicted to result in premature termination of the protein product. 

Illumina Technology: HiSeq 2000 exome sequencing with 100 bp paired-end reads. 

 

Hood, R. L., Lines, M. A., Nikkel, S. M., Schwartzentruber, J., Beaulieu, C., et al. (2012) 

Mutations in SRCAP, encoding SNF2-related CREBBP activator protein, cause Floating-Harbor 

syndrome. Am J Hum Genet 90: 308-313 

The authors identified heterozygous truncating mutations in SRCAP in five unrelated individuals with 

sporadic Floating-Harbor syndrome (FHS). Sanger sequencing identified mutations in SRCAP in eight more 

affected individuals. Mutations were de novo in all six instances in which parental DNA was available. 

SRCAP is an SNF2-related chromatin-remodeling factor that serves as a coactivator for CREB-binding 

protein (CREBBP, better known as CBP, the major cause of Rubinstein-Taybi syndrome (RTS)). 

Illumina Technology: HiSeq exome sequencing with 35–40 Gbp of 100 bp paired-end reads 

 

Kong, A., Frigge, M. L., Masson, G., Besenbacher, S., Sulem, P., et al. (2012) Rate of de novo 

mutations and the importance of father's age to disease risk. Nature 488: 471-475 

The authors show that the diversity in the mutation rate of single nucleotide polymorphisms is dominated 

by the age of the father at conception of the child. Starting with an average de novo mutation rate of 1.20 

x 10-8 per nucleotide per generation at age of 29.7, there is an increase of about two mutations per year. 

An exponential model estimates paternal mutations doubling every 16.5 years. This highlights the 

importance of the father’s age in determining the risk of genetic diseases. 

Illumina Technology: Genome Analyzerllx and HiSeq 2000 whole-genome sequencing. 
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and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly 

syndromes. Nat Genet 44: 934-940 
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Structural Variants 

Structural variants are remarkably common and complex51 and can contribute to both inherited and de 

novo disease phenotypes.52 Some complex variants exhibit profoundly complicated rearrangements 

between distinct loci from multiple chromosomes, whereas others involve more subtle alterations at a 

single locus.53 

 

Copy number variations (CNVs) represent a significant source of genetic diversity and may be 

responsible for some of the missing heritability found in SNP-based studies. CNVs appear to be 

particularly important in neuronal diseases and have been shown to contribute to disease susceptibility 

for several neurobehavioral phenotypes, including autism spectrum disorders, mental retardation, and 

schizophrenia.54 

 

Some notable successes have been achieved with array-based approaches, particularly with mapping 

CNVs. However, arrays cannot detect balanced translocations and fluorescence in situ hybridization 

(FISH) techniques are targeted with limited resolution. The true extent of balanced translocations in 

both healthy and diseased genomes was only discovered with the advent of NGS. Paired-end and 

mate-pair sequencing are particularly effective in mapping genomic rearrangements.55 

 

 
 

Detecting canonical structural variation (SV) breakpoints through sequencing.  
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28: 43-53 
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(From previous page) When DNA sequences are collected from an experimental (Exp.) 

genome and aligned to a reference (Ref.) genome, each structural variant class generates 

a distinct alignment pattern. The patterns observed for paired-end mapping (PEM) and 

splitread mapping (SRM) are illustrated when both genomes have identical structure (a), 

and cases where the experimental genome contains a deletion (b), a tandem duplication 

(c), an inversion (d), a transposon insertion (e) or a reciprocal translocation (f). PEM relies 

upon readpairs whose unsequenced portion (dotted lines) spans a SV breakpoint. When 

aligned to the reference genome, the alignment distance and orientation of such readpairs 

indicate the type of rearrangement that has occurred. Reads that map to the plus strand 

are shown as right-facing arrows. Reads that map to the negative strand are shown as 

leftward-facing arrows. Quinlan, A. R. and Hall I. M. (2012) Trends Genet 28: 43-53  
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Types of Analysis 

Genomic-Based Analysis 

NGS provides a simple workflow that allows a variety of types of analyses, including whole-genome, 

whole-exome, transcriptome, ChIP-Seq, and epigenome sequencing. 

 

 

 

Simplified workflows for whole-exome, whole-genome, and transcriptome 

sequencing. The initial sample preparation is identical for both whole-exome and whole-

genome sequencing. Genomic DNA is broken up into small fragments and sequence 

adaptors, which allow each fragment to be hybridized to the flowcell where the sequencing 

occurs, are added. Whole-exome sequencing protocols proceed with the hybridization of 

the fragments to probes that are complimentary to all the known exons in the genome, 

which are then captured while the remaining DNA is washed away, leaving a pool of 

fragments containing exons. Whole-genome sequencing requires no extra steps following 

the addition of adaptors and the library is ready to be sequenced at that point. For 

transcriptome sequencing, the procedure is identical to the other two protocols, with the 

exception of the initial stages of sample preparation. Here, it is customary to start with a 

pool of total RNA, from which mRNA is captured and then sheared and, finally, cDNA is 

synthesized. At this step, the preparation of the library and sequencing follows the same 

general procedures as for the two other protocols. Bras, J., et al. (2012). Nat Rev Neurosci 

13:453-64 
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Transcriptome Analysis 

Expression analysis adds an additional level of information to help interpret the impact of genetic 

aberrations in genetic diseases. The expression of a mutated allele provides additional evidence that it 

could be a causative mutation.56 Expression analysis is also a survey of the functionality of the 

genetic, epigenetic, and RNA processing machinery57 and splice variants.58 Sequencing of the RNA 

transcripts (RNA-Seq) is unaffected by changes in the RNA sequence and offers an objective tool to 

assess both the gene expression and modifications of the RNA.  

 

 

Different types of alternative splicing. Introns are represented by lines, and exons are 

represented by boxes. Promoters are indicated with broken arrows and polyadenylation 

sites with AAAA Mills, J. D. and Janitz M. (2012) Neurobiol Aging 33:1012 e11-24. 
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This study provides evidence that pathogenic structural variants have a functional impact via 

transcriptome alterations in Autism Spectrum Disorders (ASDs). It demonstrates the utility of integrating 

gene expression with mutation data for the prioritization of genes disrupted by potentially pathogenic 
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cluster within the most pathogenic CNVs.  
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Cytogenetics 

Cytogenetics is a branch of genetics that studies the structure and function of DNA within the cell 

nucleus. It includes analysis of G-banded chromosomes (karyotyping), fluorescent in situ hybridization 

(FISH) and comparative genomic hybridization (CGH). These techniques require considerable skill to 

execute and the resolution is limited. The use of array- and sequence-based mapping allows a greater 

degree of accuracy and will likely replace the traditional methods over time.59 

 
Method Advantage Disadvantage 

FISH Well-established Requires considerable skill. 

Needs primers to the area of 

interest. 

Limited resolution. 

Array-based mapping Inexpensive. 

Fast and can be automated. 

Does not require prior 

knowledge. 

Cannot detect balanced 

translocations or rearrangements. 

Array could be population specific. 

NGS High resolution. 

No population bias. 

Does not require prior 

knowledge. 

Requires more extensive data 

analysis. 
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full molecular characterization of the abnormal area in patients are key to better understanding 

phenotype-karyotype correlations that helps to identify candidate genes. 
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Pathway Analysis 

A central goal of most genetic studies is to gain an understanding of the pathobiological mechanisms 

involved in the onset and pathology of a disease.60 In pathway-based analysis the aim is to identify 

multiple associated genes that affect one biological pathway, yielding information not only on that 

particular pathway’s involvement in the disease, but also suggesting other potential risk-conferring 

genes.61 An example of this approach comes from the field of Alzheimer’s disease, where it has been 

shown that there is a considerable overrepresentation of disease-associated genes in pathways related 

to cholesterol metabolism and the immune response in two large GWAS.62 Our understanding of 

biological pathways and their interactions is still far from complete so these observations should be 

treated as hypotheses that can be tested more rigorously. 
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