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Introduction

As the cost of whole-exome sequencing (WES) and
whole-genome sequencing (WGS) and downstream data
processing continues to decrease, population sequencing
studies are becoming feasible at unprecedented scales.
Cohort-level catalogs of variation are key resources

for ancestry studies, rare variant insights, discovery of
genotype/phenotype associations, and annotation of
clinical genomic features. Therefore, it is important that
cohort call sets are highly accurate, yet informatic and
analytical challenges remain when combining data from a
large number of samples.

Population genetics data analysis

A typical workflow for population genetics (PopGen)

data processing starts with analyzing the samples inde-
pendently during the read mapping and variant calling
stage, with variants exported to a gVCF file. Then gVCF
files are aggregated across all samples in a cohort to
obtain a conceptual matrix, populated with genotypes

and associated confidence metrics (Figure 1). The matrix
can be saved in multiple formats, including: a multisam-
ple VCF (DRAGEN gVCF Genotyper), multisample gvVCF
(DRAGEN/Genome analysis toolkit (GATK) Combine gVCF),
or a database (GATK GenomicsDB, GLnexus RocksDB). In
all cases, the aim is to provide a variant-centric view with
genotype calls across the entire cohort. This provides the
opportunity to use cohort information to improve genotype
calls in individual samples, a statistical model known as
joint genotyping. However, care must be taken because
increasing sample sizes can also accumulate errors.

There is limited data on the impact of joint genotyping on
accuracy, in part because it has been difficult to separate
the joint genotyping tool from the gVCF aggregation tool.
Aggregating a large number of samples presents particular
challenges when unifying different variant representa-
tions in a consistent way across the cohort. An increase in
cohort size implies an increase of multiallelic variants and
the number of alternative alleles, so trade-offs must be
made between preserving the full data from the gvVCFs and
scalability. Additionally, established GATK workflows for
data processing are complicated adding to the challenge.
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The DRAGEN Platform offers a simplified workflow for
cohort analysis (Figure 1) where the output format before
and after joint genotyping is multisample VCF file. This
enables a direct measurement of the impact of the joint
genotyping model.

In this technical note, the performance of joint genotyping
with the DRAGEN Platform is evaluated in three use cases
that are common for large-scale PopGen projects:

» High-coverage WGS samples at 35x
» Low-coverage WGS samples at 15x
» High-coverage WES samples at 50x

Benchmarking comparisons using the DRAGEN Platform
against a call set generated with GATK on a recent rese-
quencing of the 1000 Genomes Project phase 3 samples'
are presented. Contribution of each workflow stage to call
set accuracy is analyzed and a detailed investigation into
why some methods that are part of the GATK best practice
workflow are not expected to be beneficial for DRA-
GEN-generated data is provided. Finally, recommendations
for processing cohorts with the DRAGEN Platform to obtain
analysis-ready variants are presented.

Methods
Input data sets

WGS cohort analysis was based on the 1000 Genomes
Project cohort.? The data set contains 2504 WGS samples
sequenced using the NovaSeq™ 6000 System at > 30x
coverage. Results from processing the same samples with
the GATK workflow are publicly available, so results can be
reproduced.®* WES cohort analysis was based on a panel
of 10 samples comprising eight unrelated samples from the
CEPH collection (CEU) and two samples from trios in the
Genome In a Bottle (GIAB) consortium.® All samples were
sequenced using the NovaSeq™ 6000 System. The human
reference genome hg38 with alternate contigs was used
for all analyses.

Cohort analysis

For WGS analysis, gVCFs from the cohort were aggregated
and joint genotyped using the DRAGEN Platform v3.5.7b
or joint genotyped and processed for variant quality score
recalibration (VQSR) following the GATK v3.5 workflow
(Figure 1). Both workflows produce msVCF output

per chromosome.
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http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/20190425_NYGC_GATK/
https://www.nist.gov/programs-projects/genome-bottle
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Figure 1: PopGen data processing and analysis workflows using the DRAGEN Platform (left) and GATK best practices (right) workflows.®—
The DRAGEN PopGen workflow is composed of two distinct steps: aggregation of gvVCFs through the cohort with gVCF Genotyper (DRAGEN-
GG), and the joint genotyping step with Joint Genotyper (DRAGEN-JG). The DRAGEN workflow does not proceed with any recalibration steps.
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High-coverage WGS

To demonstrate the performance of the DRAGEN Platform
in high-coverage WGS samples, we performed a direct
accuracy comparison between the DRAGEN Platform and
GATK call sets. Performance was measured using receiver
operator characteristic (ROC) metrics in a well-character-
ized sample (NA12878), with truth variants released by the
GIAB, that was part of the original cohort. We restricted
analyses to chromosome 17 to minimize computation-

al costs.

ROC curves plot the true positive rate against the
false positive rate at various thresholds. The area under an
ROC curve is a metric for variant-calling accuracy.

Results

Four population data sets were assessed by extracting
the column containing the truth sample NA12878 from the
multisample VCF output and plotting ROC curves. Two
were from the GATK workflow and two from the DRAGEN
Platform:

« All pass variants from Joint Genotyping (GATK-JG)"

» All pass variants from Joint Genotyping that also passed
recalibration only (GATK-VQSR)

« All pass variants from gVCF Genotyper (DRAGEN-GG)

« All pass variants after Joint Genotyping (DRAGEN-JG)

Overall, the DRAGEN Platform outperforms GATK re-
gardless of the workflow composition, driven by superior
accuracy in single-sample variant calling for SNPs
(Figure 2A) and indels (Figure 2B). An unexpected obser-
vation is that DRAGEN accuracy is reduced after Joint
Genotyping, due to an increase in false positives (Figure 2
and Figure 3). Traditional joint calling methods available
today do not provide any gains when applied to DRAGEN
single-sample gVCFs and result in unnecessary higher
costs. This is because the DRAGEN platform genotyper
includes models of PCR-induced errors and pileup cor-
related errors.

Read the Accuracy improvements in germline small
variant calling with the DRAGEN platform application note

* The output of GATK aggregation, before joint
genotyping, was not available.
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Mendelian errors in trios are a useful metric for broad
assessment of precision because they are not restricted

to variants within high-confidence regions of the genome.
Evaluating the number of Mendelian errors over the total
number of sites that are variant in at least one member

of the trio in the cohort® is consistent with previous data.
Regardless of the workflow, accuracy is increased with the
DRAGEN Platform, but performance is reduced after Joint
Genotyping (Table 1).
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Figure 2: Variant-calling accuracy in high-coverage WGS data
set—~False positives and negatives for variant calling of (A)
SNPs and (B) indels in a single sample gVCF (green bars) and
multisample VCF (blue bars) after PopGen processing with the
DRAGEN Platform (GG, JG) and the GATK workflow (JG, VQSR).
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https://science-docs.illumina.com/documents/Informatics/dragen-v3-accuracy-appnote-html-970-2019-006/Content/Source/Informatics/Dragen/dragen-v3-accuracy-appnote-970-2019-006/dragen-v3-accuracy-appnote-970-2019-006.html
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Figure 3: ROC curves after cohort analysis in high-coverage WGS—Computed ROC curves for single-sample gVCFs (left panels) and

multisample VCFs (right panels) output from cohort analysis workflows.

Table 1: Calculation of Mendelian errors in a trio present in the high-coverage WGS cohort

GATK VQSR

DRAGEN gVCF

DRAGEN Joint

Mendelian errors GATK Joint Genotyper Genotyper Genotyper
) ) ) 1808/139,375 833/133,195 315/127,220 385/127,667
Inside confident regions (1.30%) (0.63%) (0.25%) (0.30%)
10,433/220,814 5272/184,275 4540/179,197 5318/186,933
Whole chromosome 17 (4.72%) (2.86%) (2.53%) (2.84%)
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Effect of sample size on cohort analysis

The effect of sample size on the performance of DRAGEN
Joint Genotyping was evaluated by comparing ge-
nome-wide accuracy metrics with increasing numbers

of 3, 6,10, 50, and 100 samples. Compared to baseline
metrics with a single sample, we saw a decrease in false
negatives and an increase in false positives for SNPs
(Figure 4A), and increases in both metrics for indels (Figure
4B). As before, joint calling methods do not provide gains
for DRAGEN single-sample gVCFs, which include models
of PCR-induced and pileup correlated errors.
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Figure 4: Effect of sample size on joint genotyping—False
positives and negatives for (A) SNPs and (B) indels plotted after
joint genotyping with the DRAGEN Platform for increasing sample
sizes in high-coverage WGS data set.
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Low-coverage WGS

To investigate the potential benefit of joint genotyping at
lower coverages, we downsampled the alignments from
the 1000 Genomes cohort to 15x and reprocessed them
with the DRAGEN Platform. A region consisting of the first
10 Mbp of chromosome 17 was selected for this analysis.
gVCFs from the downsampled data were aggregated and
joint genotyped and performance was measured using
ROC metrics for the NA12878 truth sample.

Results

The performance in a low-coverage WGS data set was
measured by extracting the column containing NA12878
truth sample from the multisample VCF and plotting error
counts after both gVCF Genotyper and Joint Genotyper.
Results are similar to high-coverage data, with gains in
SNP sensitivity outweighed by losses in specificity (Figure
5A) and indel calling showing regressions on all metrics
(Figure 5B).

High-coverage WES data set

The performance of the DRAGEN Joint Genotyper in WES
data was measured using a panel of 10 samples compris-
ing eight unrelated samples from the CEU population and
two children from the GIAB trios. Joint genotyping was
performed on subsets comprising of 1, 3, 4, 6, 8, and 10
samples. Performance was measured within the exome
capture regions, using ROC metrics in the NA12878 truth
sample.

Results

Calls from the different subsets were assessed by extract-
ing the column containing the truth sample NA12878 from
the multisample VCF output and plotting ROC curves. As in
the other analyses, no visible benefit from joint genotyp-
ing more samples was observed (Figure 6). The preferred
DRAGEN PopGen workflow stops after running the gVCF
Genotyper and omits the joint genotyping step (Figure 7).
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Figure 5: Variant calling accuracy in low-coverage WGS data
set—False positives and negatives for variant calling of (A) SNPs

and (B) indels in multisample VCF after PopGen processing with the

DRAGEN Platform (GG, JG) comparing sequencing coverages of
15x and 35x.
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Figure 6: Effect of DRAGEN Joint Genotyper on high-coverage
WES—ROC curves for increasing number of samples after joint

genotyping with the DRAGEN Platform.
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Figure 7: Recommended DRAGEN PopGen workflow

Summary

The established GATK Best Practices workflow for cohort
data processing and analysis includes a joint genotyp-

ing step, where cohort information is used to improve
genotype calls in individual samples. However, based on
the results presented in this technical note, joint ge-
notyping as implemented by the GATK workflow is not
recommended for use with the DRAGEN Platform for large
cohorts of well-covered samples (at least 30x coverage),
due to risks of introducing errors, high computation times,
and costs. The preferred DRAGEN PopGen workflow stops
after running the gVCF Genotyper and omits the joint
genotyping step (Figure 7). This results in aggregation of
individual gVCFs and produces a multisample VCF with
analysis-ready variants. This simplified workflow with the
DRAGEN Platform delivers highly accurate population call
sets in a flexible and efficient manner.
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